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On the behaviour of liquid dispersions 
in mixing vessels 
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(Received 8 March 1960 and in revised form 26 November 1960) 

The present paper is concerned with the conditions of flow in tanks containing 
stirred fluids. An attempt is made to apply the theoretical concepts of local 
isotropy to explain the behaviour of liquid in liquid dispersions, subjected to 
turbulent agitation. Relations describing quantitatively the influence of turbu- 
lence on both break-up and coalescence of individual droplets are derived and are 
compared with experimental evidence. A special type of dispersion is described 
in which droplet size is controlled by the prevention of coalescence due to 
turbulence. The dependence of droplet size on energy dissipation per unit mass, 
as predicted by the theory of local isotropy, is put to an experimental test using 
geometrically similar vessels of different sizes. 

Though the results are not entirely conclusive, experimental evidence suggests 
that the hypothesis of locally isotropic flow may be applicable to the flow con- 
ditions described in the paper, and that statistical theories of turbulence can be 
of practical value in estimating droplet sizes in agitated dispersions. 

Introduction 
The mixing or agitation of fluids in cylindrical tanks is a common operation 

in chemical industry, and as such has been studied extensively. A wide variety 
of agitator designs is used, while conditions of flow may vary from laminar flow 
to fully-developed turbulence. The following discussion is limited to turbine 
agitators and conditions of turbulent flow only. 

The behaviour of liquid-liquid dispersions in such tanks is of special interest. 
If two immiscible liquids are agitated, a dispersion is formed, in which continuous 
break-up and coalescence of droplets occur simultaneously. If the agitation is 
continued over a sufficiently long time, a local dynamical balance between 
break-up and coalescence is established. The average size of the droplets at 
equilibrium will then depend on the conditions of agitation, which affect the 
dispersion in several ways : 

(a )  droplets will be broken up in regions of high shear stress near the agitator 

( b )  turbulent velocity and pressure variations along the surface of a single 

(c) the turbulent flow may accelerate or slow down the coalescence of the 

In an actual dispersion all three processes occur simultaneously. Break-up in 

blades; 

droplet may cause break-up; 

droplets. 

17-2 
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regions of high shear stress should be important in very dilute dispersions, and 
in cases where coalescence is negligible. In  cases in which coalescence is impor- 
tant, the influence of the local turbulent flow on the equilibrium state of the 
dispersion should predominate. 

The phenomena mentioned under ( b )  and (c) are on a microscale, and the average 
droplet size of the dispersion is determined by what happens in a very small 
volume of fluid around the individual droplet. Thus the direct influence of the 
large-scale flow may be comparatively small. Now, a hypothesis put forward 
by Kolmogoroff is that, if the Reynolds number of the flow is high, the statistical 
properties of the flow-field in a very small volume of liquid can be estimated from 
a concept of local isotropy. The possibility of applying Kolmogoroff’s theory to 
predict the droplet sizes in such dispersions is investigated here. This investiga- 
tion should be of wider interest for the study of locally isotropic turbulence in 
general, especially as conditions of flow in stirred tanks allow the realization of 
very high degrees of turbulence. Such conditions are hard to obtain in wind 
tunnels. 

A rule for the scaling-up of mixing plants from experimental results on the 
basis of a criterion of specific power input has been used empirically for a long 
time by chemical engineers. The theory of local isotropy is qualitatively closely 
related to such a criterion. Thus it should be expected that this theory, by putting 
the criterion on a more solid analytical basis, would shed new light on the range 
of its applicability. 

For completeness, a short review of the basic concepts of local isotropy will 
be given, before the possibility of locally isotropic flow in a stirred tank is 
considered. 

Kolmogoroff’s theory of local isotropy 
The theory of local isotropy (Kolmogoroff 1941) has been reviewed extensively 

(Batchelor 1947, 1953). Therefore only a short summary will be given in what 
follows. 

Kolmogoroff has put forward the hypothesis that in any turbulent flow at 
sufficiently high Reynolds numbers the small-scale components of the turbulent 
velocity fluctuations are statistically independent of the main flow and of the 
turbulence-generating mechanism. The small-scale velocity fluctuations are 
determined by the local rate of energy dissipation per unit mass of fluid E and 
the kinematic viscosity Y. Otherwise put, the spectrum of turbulent velocity 
fluctuations includes a range of high wave-numbers called the ‘universal equi- 
librium range’, which is uniquely determined by E and v. Kolmogoroff defines 
a length scale by 

and a velocity scale by 
7 = ( V 3 / € ) 4 ,  

v = (Y€)k 

These parameters can be used to define conditions of flow in the equilibrium 
range instead of E and Y. 

For local isotropy to exist, the linear scale L of the energy-containing eddies 
must be large compared to the scale of the small energy-dissipating eddies 7. 
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This implies that the Reynolds number of the flow must be high, or alternatively 
(cf. Batchelor 1953) that (Lu‘/v)% 9 1, where u‘ is the root-mean-square of one 
component of the turbulent velocity fluctuation. If the conditions mentioned 
above for the existence of local isotropy are met, then in any small volume of 
characteristic dimension r (< L )  all velocity correlations must be functions of 
v and 7, or of B and v, only. Thus the mean-square of relative velocity u( r )  between 
any two points distance r apart? is a universal function of w and 7. Furthermore, 
if L 9 r 9 7, then u2(r) is independent of viscosity, and is a function of E only. 

In  this case, and for very small values of r as well, the form of the universal 
function can be obtained from dimensional analysis. 

__ 

.__ 

u2(r) = C,&Q for L B r 9 7, (3) 

u2(r) = C,cr2/v for L $ q 9 r .  (4) 
__ 

The range of values of r for which (3) applies is called the ‘inertial subrange’. 
In order for an inertial subrange to exist, (Lu’/v)Q must be large compared to 
unity. Under the experimental conditions generally used for the study of 
turbulence in the laboratory, it is very difficult to satisfy the above conditions, 
and therefore few data proving the existence of local isotropy in the inertial 
subrange are available. The possibility of obtaining very high values of B and of 
u’L/v in a mixing tank should therefore be of interest for the study of locally 
isotropic turbulence. 

Conditions of flow in stirred tanks 
Local isotropy is possible with different types of agitators. However, the 

discussion will be limited to  paddle and turbine agitators, because of their simple 
design and wide application. A typical agitator of this type is shown in figure 1. 
The mixing vessel is equipped with flow baffles to prevent the establishment of 
a vortex around the agitator shaft (avoidance of the influence of Froude number). 
The same effect can be obtained by excluding air from the vessel and filling it 
completely with liquid. The conditions of turbulence in such a mixing vessel can 
be predicted from a modified Reynolds number ND2/v, where D is the diameter 
of the agitator and N is its speed in revolutions per second. Fully developed 
turbulence (in the region of the agitator) exists with such agitators if this modified 
Reynolds number is higher than lo4. It has been shown experimentally that for 
high Reynolds numbers the energy input of the mixing impellor per unit mass of 
liquid in the vessel is independent of the properties of the liquid, and a function 
only of the geometrical design of the agitator and its speed (Rushton et al. 1950). 
In geometrically similar vessels the average energy dissipation C in the liquid must 
therefore be a function of N and D only, and by dimensional analysis one can 
derive 

Here K is a dimensionless constant dependent on the geometry of the vessel 
and the agitator only. 

two points; similar results can be stated for other components of the relative velocity. 

C = KN3D2. (5) 

t u can be taken as the component of relative velocity parallel to the line joining the 
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The knowledge of the average energy dissipation is not sufficient to determine 
the dependence of local values of E on N and D, unless the distribution of the 
main flow velocity in the tank is universal. That means that the ratio of the average 
flow velocities at any two points is constant, and independent of Reynolds 

c 

6- 
FIGURE 1. Sketch of a turbine mixer. 

number and fluid properties. In  this case only can it be assumed that the 
distribution in space of E is universal also, and all local values of E are then 
directly proportional to C. Thus 

( 6 )  E(X, y, 2) = K’(z, y, 2) N 3 P .  

The dimensionless factor K’ is an experimentally determinable function of the 
co-ordinates of any point in the vessel. 

The velocity distribution in mixing tanks of this type has been experimentally 
investigated by Rushton & Sachs (1954) and by Aiba Schuichi (1958), and was 
found to be universal at Reynolds numbers above lo4 with the equipment used. 
It is of particular interest to note that the velocity distribution in the liquid jets 
leaving the agitator blades was also found to be universal, whereas in a free 
jet the distribution becomes universal only a t  large distances from the origin. 
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Though the mixing action of a turbine agitator has often been compared to 
that of a free jet in stagnant surroundings, there is a basic difference between the 
two cases. While liquid entering the agitator is already highly turbulent, in a jet 
fully developed turbulence exists only at a comparatively large distance from the 
origin. 

Taking into consideration the above discussion, it is permissible to conclude 
that, in an agitated fluid, statistical equilibrium is possible at any location in the 
liquid. 

The requirements for the existence of local isotropy in a mixing tank can be 
fulfilled, though the flow is definitely non-isotropic. Experimentally, the 
realization of Reynolds numbers of several millions and local values of e above 
lo6 are feasible. Thus, for IZ = lo6 cm3/sec2 and Y = 1 centistoke, 7 becomes equal 
to 10microns. The Reynolds number of turbulence (Lu’/Y) in this case will be 
approximately 8500 for L = 5cm, and 75,000 for L = 25cm. Thus even for 
relatively small L, ,517 will be very large.? 

The flow around a turbine agitator should therefore furnish experimental 
evidence as to the validity of the concepts of local isotropy. However, one 
practical difficulty is that a reliable instrument for the detection and measure- 
ment of turbulent velocity fluctuations is not yet available for use with liquids. 

Some indirect experimental evidence, however, can be obtained by measuring 
the droplet size distribution of agitated dilute dispersions of two immiscible 
liquids. 

Break-up and coalescence of liquid dispersions in turbulent flow 
If a dilute liquid-liquid dispersion is exposed to turbulent flow conditions, 

simultaneous coalescence and break-up occur. If the dispersion remains in a 
quasi-stationary flow-field for a sufficient duration, a dynamical equilibrium 
between coalescence and break-up is established. It is possible to predict from 
simple theoretical considerations the influence of the turbulent velocity fluctua- 
tions on both break-up and coalescence. The case of break-up has been treated 
previously by Kolmogoroff (1949) and Hinze (1955). The equations for preven- 
tion of coalescence were derived by Shinnar & Church (1960). 

(a)  Break-up of droplets 
Consider a small volume of fluid in which turbulence is locally isotropic. Any of 
the droplets in this volume will be exposed to both inertial forces due to velocity 
fluctuations and to viscous shear forces. If the droplet is much larger than the 
microscale 7, viscous forces can be neglected. In  this case the droplet will oscillate 
about its spherical equilibrium shape concurrently with the surrounding fluid, 
provided the densities and viscosities of both liquids are not much different. 
If the deformations are large, the droplets become unstable and break up into 
two or more smaller fragments. But in order to become unstable, the kinetic 
energy of the oscillations must be sufficient to provide the gain in surface energy 

In order to calculate the Reynolds number of turbulence defined above, the macro- 
scale of turbulence L must be known. Though L has not been determined, its order of 
magnitude should be comparable to the width of the agitator blades. 
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due to the break-up. The kinetic energy of the oscillating droplet may be assumed 
proportional to p u 2 ( d )  d3, where u 2 ( d )  is the mean-square of the relative velocity 
fluctuations between two diametrically opposite points on the surface of the 
droplet. The minimum gain in surface energy is approximately proportional to 
ad2. The value of the ratio between these two energies ( p u 2 ( d )  d / a )  is called the 
Weber number. The critical value of this ratio at which break-up occurs is 
dependent on the number of droplets formed as a result of the break-up. This 
critical value should be constant for any given system, though it may vary for 
different liquids. 

In  locally isotropic flow the average mean-squared velocity between two points 
is given by equations (3) and (a), and therefore the Weber number of a droplet, 
the diameter of which is much larger than 7, becomes 

- __ 

-~ - 

___ 

(7) 
p u 2 ( d )  d pCICQd* We = ___ = ___. 

0- 0- 

The relation F. = KN3D2, which was obtained from other evidence, has been 
discussed in connexion with equation (5). Thus the value of the maximum stable 
droplet diameter can be obtained from the relation 

pCIKfN2D*d*a-l = constant. (8) 

Equation (8) should apply only to cases in which the maximum diameter obtained 
is larger than 7. 

In  contrast to the above, if 0- is very small or v is rather large, as for instance 
for some emulsions, the maximum stable droplet diameter will be smaller than 
the microscale 7. In  this case the viscous shear forces cannot be neglected any 
longer, as the stresses due to viscous shear will be much larger than those due to 
inertial effects. The corresponding equation for the break-up of a droplet, due to 
viscous shear only, was derived by Taylor (1932): 

au d 
(9) 

where CD is a certain function, and the suffices c and d refer to the continuous 
and dispersed phases. In  locally isotropic flow (au/ar)2 = 28115~. Therefore 
equation (9) now becomes 

This equation should describe the breakup of droplets in emulsions, whenever 

d < rat 
t Kolmogoroff has suggested for this case, in analogy with equation (7), that 

- 
puZ(d)d pC,Edd3 

= #(?) 9 
-=- 

u vu 
where q5 is an unknown function. It should be pointed out, however, that, if d g 7, then 
the viscous shear forces should be much larger than the inertial forces, which are given - 
by pu2(d). 
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( b )  Coalescence of droplets 

In an agitated dispersion, the rate of coalescence of droplets may be accelerated 
or slowed down by turbulence, depending on the physical properties of the 
constituents of the system. 

Local velocity fluctuations will increase the rate of collisions between droplets 
and thereby increase the chance of coalescence. However, it  is well known that 
only a small number of collisions result in immediate coalescence. This is so 
because a thin film of liquid, trapped between two colliding droplets, acts as 
an elastic cushion and may cause the droplets to recoil. If the two droplets 
adhere to each other, the thickness of the film separating them will gradually 
decrease due to diffusion. When the film has thinned down sufficiently, the 
boundary between the two droplets may collapse. However, turbulent velocity 
fluctuations may meanwhile communicate sufficient energy to the two droplets 
to cause re-separation, before coalescence has occurred. This effect will be en- 
hanced if the time needed for the thinning down of the film is artificially in- 
creased, for instance by adding a protective colloid to the dispersion. This may 
be pushed to the point of complete prevention of coalescence in turbulent flow. 
Coalescence of such a dispersion will, of course, take place rapidly if agitation 
is stopped. 

The effectiveness of the prevention of coalescence as described above is found 
to be a function of individual droplet diameters, since the forces of adhesion and 
those of inertia are different functions of droplet diameter. Hence, for very 
small droplets, turbulent energy input into a droplet pair may be insufficient to 
overcome the adhesion energy barrier. 

The droplet diameter dmin, for which the energy due to turbulent velocity 
fluctuations is equal to the energy of adhesion, depends on the intensity of 
agitation defined by e,  and also, naturally, on the physical properties of the 
constituents. This droplet diameter can be estimated as follows. 

The force of adhesion between any two droplets of respective diameters d, 
and d2 is given by 

P(h0) = nd1d2 j m f ( h )  dh. 
1 +  2 ho 

Here h, is the smallest distance between the two droplets, i.e. h, is actually the 
thickness of the 'films' separating them; h, is zero when the droplets touch each 
other; f ( h )  is the force of attraction per square centimetre between two infinite 
parallel surfaces separated by a distance h (Bradley 1932; Deryaguin et al. 1934). 
The energy of adhesion E, can be calculated from equation ( 1  1) by 

where A(h,) is defined by 

$njm/mf(h)dhdh '  
h u h  
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and is the energy necessary to separate completely two droplets of unit diameter 
initially separated by the minimum distance h,. If the two droplets are of equal 
diameter, equation (12a)  simplifies to 

E, = A(&) a. (13) 

The kinetic energy of two droplets of diameter d in  movement relative to each 
other is proportional to pu2(d) d3. As already stated, this must be larger than the 
energy of adhesion in order to prevent coalescence. The drop diameter for which 
separation is still possible in a given fluid is therefore given implicitly by 

__ 

In  locally isotropic flow u2(a) = C(sd)% [see equation (3)], and so (14) may be 
written as C,ps%d;/A(h,) = constant. 

For fluid stirred in a tank at constant power number, this is equivalent to 

ClpK3f12D+dQ/A(h,) = constant. ( 1 6 )  

Both A(h,) and h, are constant and independent of the droplet diameter d in any 
given dispersion as long as hold is small. However, the numerical values of these 
constants are difficult to estimate from the properties of the system. For a given 
pair of fluids, A@,) is constant, and equations (15) and (16 )  may be applied to 
predict the dependence of d& on C. 

The considerations set out above do not apply if the maximum diameter 
defined by equation (8) is smaller than the diameter as given by equation (16 ) ,  
for then separation of adhering droplets by turbulent agitation becomes in- 
significant. Thus droplets in the dispersion fuse rapidly until the diameter of 
the drop formed reaches the unstable size for break-up, and then fragmentation 
into several smaller droplets becomes probable. The process restarts with 
coalescence. The size distribution is determined by the state of dynamical 
equilibrium reached. 

In  figure 2 the maximum stable droplet diameter as determined by the process 
of break-up, and the minimum stable droplet diameter as determined by the 
process of coalescence, are plotted against agitator speed. This latter quantity 
is proportional to sf. 

From this figure it is apparent that prevention of coalescence due to turbulent 
velocity fluctuations in the bulk liquid is of importance in the region to the left 
of the point of intersection between the two lines plotted on the graph, while 
being relatively unimportant to the right of this point. The value of E at which 
the two lines intersect depends on the physical properties of the constituents. 
The existence of such a critical value has been confirmed experimentally as 
will be seen later. 

(c) Simultaneous break-up and coalescence 

In  practice, the size distribution of droplets in an agitated dispersion is deter- 
mined by both break-up and coalescence occurring simultaneously. The diameters 
defined in equations (8) and ( 1 6 )  are in reality statistical averages; in the case of 
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(8), of the droplet size for which break-up most probably occurs, and in the case 
of (16), of the droplet size above which prevention of coalescence becomes 
effective. From the plots of the dependence of d one some conclusions as to which 
of the two processes predominates in the dispersion can be drawn. In  addition, 
it is possible to conclude that in cases where locally isotropic flow may be 
assumed to exist, droplet size distribution is a function of energy dissipation 
and the physical properties of the constituents only. 

N -  d 
FIGURE 2. Logarithmic plot of droplet diameter aa a function of agitator speed. Equa- 
tion (8) : d controlled by breakup; equation (16) : d controlled by prevention of Coalescence. 

The reasoning set out above provides the limitations to the empirical engi- 
neering rule of scaling-up mixing plants. As already mentioned above, this rule is 
based on a specific energy input per unit mass criterion. Thus this criterion, 
which of course applies only approximately, can safely be applied to all those 
cases where ( a )  local isotropy is expected to exist, ( b )  the main influence of tur- 
bulent agitation is confined to the vicinity of a small particle or droplet, and 
(c) the influence of the large-scale flow (gross mixing) may be neglected. 

There exist some special dispersions in which prevention of coalescence is the 
factor determining droplet size; this can be shown by experimental evidence 
unrelated to the above. As already mentioned, the addition of a protective colloid 
to the dispersion may slow down coalescence. Dispersions can be prepared in 
which no break-up or coalescence will occur as long as constant agitation is main- 
tained, and individual droplets are completely stable for many hours of agitation. 
This effect can be shown very convincingly by colouring part of the droplets: 
it will be found that under these special conditions the coloured droplets will 
retain their original colour without sharing this with other droplets. Also, droplet 
sizes will be distributed in a relatively narrow band. The sizes will again depend 
on agitation, and a reduction in agitator speed will lead to a different size dis- 
tribution in equilibrium. If a stable equilibrium is again attained at the reduced 
agitator speed, the colour tracer method may again be used to show that no 
further intermixing does occur. 
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For these special dispersions, the term ' turbulence-stabilized dispersions ' has 
been suggested by the author, and a detailed discussion of the properties of such 
dispersions has been given (Shinnar & Church 1961). 

Experimental evidence 
Several authors have studied experimentally the behaviour of two immiscible 

liquids when agitated together (Magnusson 1954; Vermeulen, Williams & 
Langlois 1955; Shinnar 1957; Shinnar & Church 1961). Their results will be 
discussed below. In  addition, some new experimental evidence obtained by 
the author is given. 

FIGURE 3. Schematic diagram of the mixing-tank used by 
Shinnar & Church in their experiments. 

Shinnar & Church dispersed a molten microcrystalline wax in hot water to 
which polyvinylalcohol had been added as a protective colloid. By syphoning 
off small samples and freezing these rapidly, droplet size distributions could be 
obtained by microscopic inspection. The experimental arrangement used is 
shown in figure 3. The behaviour of single droplets was studied by adding small 
quantities of coloured wax to the dispersion as a tracer. It was found that under 
certain conditions the agitated dispersion was stable to such a degree that no 
intermixing occurred even after 12 hr of continuous operation of the agitator. 
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However, whenever agitator speed was reduced, coalescence took place at once, 
and proceeded until after about 2 hr a new stable equilibrium was established, 
and no further intermixing and coalescence occurred. This was taken to indicate 
that droplet size in such dispersions is determined by the prevention of coales- 
cence by turbulence; thus (16) should apply to these dispersions. Figure 4 shows 
the appearance of samples of dispersions stabilized at different agitator speeds. 
Samples were taken from various points in the mixing tank, and no variation 
of droplet size with location could be detected. 

In  figures 5 and 6 average droplet sizes are plotted against agitator speed for 
some typical experiments with two different protective colloids. The droplet 
diameter given in these figures is the Sauter mean diameter defined by 
d,, = Xnd3/Znd2, where d is the diameter of each droplet and n is the number of 
droplets in each size group. The use of a mean diameter instead of a maximum or 
minimum diameter as employed above appears permissible, as the spread of the 
size distribution curves is small and the curves are all of similar shape. Table 1 
lists all size distributions for the experimental points plotted in figure 6. The ratio 
of d,,, and dmin, which are defined so that 90% of the cumulative volume of 
all droplets have a diameter smaller than dmax and 10 % are smaller than dmin, 
is fairly constant and its value is about two. It is only a t  627r.p.m. that this 
ratio increases slightly to a value of about three, but as will be explained 
later the dispersion was not ‘stable ’ at this agitator speed. 

All points plotted on figures 5 and 6 were tested for stability by the tracer 
method and the results are indicated in the figure. The assumption that preven- 
tion of coalescence by turbulence controls droplet size is of course justified only 
for those points for which no intermixing of the tracer wax occurred. For these 
points the results are in reasonable agreement with (16). One of the stabilizers 
tested (figure 6) gave rise to dispersions in which the existence of a critical 
agitator speed could be experimentally checked. Thus at 627 r.p.m. the dis- 
persion behaved as if no protective colloid were present and the tracer wax 
became completely dispersed after only 10min of agitation, even though at 
lower agitator speeds no intermixing could be detected after as long as 12hr  
of continuous agitation. When the concentration of the protective colloid was 
increased by as much as fivefold, rapid intermixing was not prevented, though 
analysis of the water phase showed that a large excess of free colloid was present. 
It may therefore be assumed that 627r.p.m. was above the critical agitator 
speed in these dispersions and for the experimental arrangement used. 

All experimental results given by Shinnar & Church were obtained from tests 
carried out with the same equipment. To test the validity of (16) for scaling-up 
purposes another series of experiments with turbulence-stabilized dispersions 
was carried out by the author. Two sets of similar tanks and impellors were 
employed, the dimensions of which are given in figure 7. A Pfaudler type turbine- 
agitator was used instead of the flat-blade turbine shown in figure 3 as two sets 
of such agitators were available. Test results are plotted in figure 8 where 
droplet sizes are given as functions of N 3 P .  The agreement with theory is seen 
to be quite good. 

It should be pointed out that in the experiments described above the agitator 
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chosen was large in comparison with the mixing vessel. Thus the influence of 
agitation extended to all parts of the mixing tank. Smaller agitators may be 
expected to give much less uniform agitation, and in such cases droplet sizes 

d 
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FIGTIBE 5. Average droplet, size as a function of agitator speed in a turbulence-stabilized 
dispersion (droplet size controlled by prevention of coalescence). Experimental arrange- 
ment shown in figure 3. Dispersion used: 5 %  molten wax (Shellwax 700) in hot water 
containing 0.1 yo polyvinylalcohol (Du Pont Elvanol 51-05 low molecular weight). 
Viscosity v, = 0.35 centistokes; vd = 22.5 centistokes. Results of colour tracer test in- 
dicated on plot as follows: 0 ,  no visible intermixing after 2 hr; , partial intermixing 
after 2 hr. 

N (r.p.m.) 

FIGURE 6. As in figure 5. Dispersion used: 5 yo molten wax (Shellwax 700) in hot water 
containing 0.1 polyvinylalcohol (Du Pont Elvanol 50-42 high molecular weight). 
Viscosity v, = 0-4 centistokes, vd = 22.5 centistokes. Results of colour tracer test indicated 
on plot as follows : 0 ,  no visible intermixing after 2 hr ; 0 ,  partial intermixing after 2 hr ; 
A, rapid intermixing. 
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may not be independent of location in the tank. Furthermore, complete preven- 
tion of coalescence due to turbulence may no longer be possible. No quantitative 
criteria for a minimum agitator size (compared with tank size) have as yet been 
established. The problem is currently under investigation. 

FIGURE 7. Experimental arrangement used for testing scaling-up relations in author’s 
experiments. Dimensions in 111111. 

A B C D E P B 
Largevessel 1220 1064 102 914 274 1270 254 
Small vessel 305 266 25.5 228.5 68.5 317-5 83.5 

Vermeulen determined average droplet sizes in agitated dispersions in- 
directly by measuring the amount of light scattered. A wide range of different 
combinations of two liquids was studied. The concentration of the dispersed 
liquid was varied from 10 to 40 %. 

Vermeulen’s results were correlated by the following empiricalIy derived 
equation 

which is identical to equation (8) derived in the present paper analytically. The 
deviation of Vermeulen’s experimental data from (17) was about & 40 %. 

pN2D*d*a-1 = 0.016, (17) 



JourrLul of Fluid M ~ C ~ L W L ~ C S ,  Vol. 1 0 ,  purt 2 Plate 1 

(b)  

I?IGUKE 4. Photomicrograph of frozcn samples of turbulence-stabilized disprsions ; 
results of colour tracer tests (experimental conditions and results given in figure 6).  
Magnification x 20. (a)  Dispersion agitated at 220 r.p.m. 4 hr. after addition of red- 
coloured wax. ( b )  Same dispersion as in (a ) ,  agitated at 156 r.p.m. 4 hr after addition of 
red-coloured wax. 
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However, the comparatively large scatter could be explained if it is borne in 
mind that a number of these tests were carried out at conditions where the above 
theory does not apply (relatively low Reynolds numbers, high concentration 
of the dispersed phase, etc.). If only dilute dispersions of liquids of low viscosity 
are considered, thescatter of theexperimental results is found to be much reduced. 
Some typical results are given in figure 9. The curve of d v5 N on the log-log plot 

250 

200 

150 

80 

70 

6o t 
i 103 1.5 2 2.5 3 4 5 6 7 8 x 1 0 3  

N3Da (~rn~8ec-~)  

FIGURE 8. Average droplet size in mixing vessels of various sizes for a turbulence- 
stabilized dispersion. Dimensions of both vessels and agitators given in figure 7. Dis- 
persion used: 6 yo molten wax (Shellwax 700) in water containing 3 % polyvinylalcohol 
(Du Pont Elvanol 50-42 high molecular weight). All points were tested by colour tracer 
method and no visible intermixing could be detected after 2 hr. 6 ,  Small vessel; 
A, large vessel. 

is seen to be concave upwards at low agitator speeds. For all liquids agreement 
with (17) is better at higher speeds. The extension of Vermeulen’s tests to cover 
a large range of mixing-vessel dimensions and the measurement of droplet size 
distributions (instead of average droplet sizes only) should be of great interest. 
Rodger, Trice & Rushton (1956) measured droplet sizes in agitated liquid-liquid 
dispersions, using equal volumes of both liquids. Technique and experimental 
conditions were similar to Vermeulen’s, but both agitator and mixing-vessel 
dimensions were varied. A complicated equation relating droplet size to agi- 
tator speed, liquid properties and the dimensions of both agitator and vessel was 
empirically derived from these tests. This equation is quite different from the 
correlation proposed by Vermeulen. For any one pair of liquids and geometrically 
similar agitators this equation reverts practically to  (16). Rodger’s formula 
predicts droplet sizes to be a function of N-33 as compared to N-2 in (16). I n  

18 Fluid Mech. 10 
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geometrically similar vessels of different dimensions, equal droplet sizes are 
predicted approximately at equal energy input per unit mass; this applies only 
to the range over which experiments were actually performed. 

A possible explanation for the difference in the experimental results obtained 
by Vermeulen and Rodger could be that, in the first set of experiments, break-up 
of droplets is the determining factor, whereas in the second set slowing up of 
coalescence due to turbulence controls droplet size. Though it is questionable 
whether (16) is applicable to concentrated dispersions, as used by Rodger, the 
agreement with (16) is interesting to note. 

lo-' 
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7 

6 

5 

4 

- 3  
E 
0 
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w 
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7 x 10-3 

(3 

100 200 1000 

N (r.p.m.) 

FIGURE 9. Droplet size as a function of agitator speed, d controlled by break-up. Data 
from Vermeulen et al. 0 ,  10 yo dispersion of kerosene in water; 0 ,  10 Yo dispersion of an 
iso-octanol carbon tetrachloride mixture in water. 

Magnusson (1954) studied agitation power requirements for oil-in-water 
dispersions in mixing vessels of various sizes and found the energy per unit mass 
needed to be approximately constant. However, droplet sizes were not deter- 
mined directly. The time needed for coalescence of a sample of each dispersion 
was used as a criterion for the state of mixing. Comparison with other data is 
therefore difficult. 

Equation (7) for break-up was applied by Kolmogoroff (1949) to droplet sizes 
in a pipe in order to provide experimental evidence for his theory of local isotropy. 
The data were obtained at relatively low Reynolds numbers and were found to 
be non-conclusive, as droplet diameter was found to be proportional to U-l 
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and not to U+ (here U is the mean bulk velocity). Hinze (1955) applied equation 
(7) to Clay’s data (1940) on dispersions agitated between rotating cylinders, but 
again the scatter is much larger than in Vermeulen’s tests. 

There is as yet no experimental evidence justifying the application ofequation 
(10) to dispersions in which d < 7. It is therefore interesting to note that (10) 
describes to a good approximation the equilibrium size distribution of gas bubbles 
in a liquid agitated by a turbine agitator. In  such a case the size distribution of 
the gas bubbles reaches an equilibrium value which depends on the intensity of 
the agitation and the physical properties of the system. Vermeulen et al. (1955) 
measured bubble sizes of different gases in water and other liquids with the same 
experimental arrangement used to measure droplet sizes in agitated liquid-liquid 
dispersions, and obtained the following dimensionless correlation 

(18) 

(18) 

N*DdpJ 2 
a- 

VPo 

N4D dp, 

c’d = constant. ____ 

This may be rewritten as 
a 

L$V cc (2) * 

Equation (18) is identical with (10). However, this problem is of much greater 
complexity, because of the large difference in densities of the two fluids, and no 
definite conclusions can be drawn at the present stage. 

The author is indebted to Mr Z. Rotem for reading the manuscript and for some 
useful suggestions. 
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